organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Yun-Long Fu,^a Zhi-Wei Xu,^a Jia-Lin Ren^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science. Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.006 Å Disorder in main residue R factor = 0.070 wR factor = 0.185 Data-to-parameter ratio = 8.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Triethylenetetraminium(4+) bis(sulfate) monohydrate

The cation and anion in the title salt, $C_6H_{22}N_4^{4+}\cdot 2SO_4^{2-}\cdot H_2O$, lie on special positions of site symmetry m and the water molecule on a special position of site symmetry 2/m. The cations, anions and water molecules are linked by hydrogen bonds into a three-dimensional network.

Comment

The triethylenetetraammonium cation has been crystallographically authenticated in salts of some mineral acids. It forms a dihydrate with sulfuric acid when the parent amine is reacted with sulfuric acid (Ilioudis et al., 2002). The title monohydrate, (I) (Fig. 1), which was obtained indirectly by way of a hydrothermal synthesis, exists as a three-dimensional hydrogen-bonded network structure, owing to extensive hydrogen bonds among the cations, anions and water molecules (Table 1). The cation and anion lie on special positions of site symmetry m and the water molecule on a special position of site symmetry 2/m.

[NH₃CH₂CH₂NH₂CH₂CH₂NH₂CH₂CH₂NH₃]⁴⁺ 2[SO₄]²⁻ H₂O (I)

Experimental

Ferric sulfate nonahydrate (0.281 g, 0.5 mmol), triethylenetetraamine (0.29 ml, 2 mmol), water (15 ml) and ethanol (5 ml) were placed in a Teflon-lined stainless steel bomb. The bomb was heated in an autoclave at 383 K for 4 d. The bomb was then cooled to room temperature to furnish crystals of (I). Iron was not incorporated in the compound isolated.

Crystal data

840 reflections with $I > 2\sigma(I)$

$C_6H_{22}N_4^{4+} \cdot 2SO_4^{2-} \cdot H_2O$	Mo $K\alpha$ radiation
$M_r = 360.41$	Cell parameters from 861
Orthorhombic, Pnnm	reflections
a = 6.3192 (8) Å	$\theta = 3.4-23.5^{\circ}$
b = 22.253 (3) Å	$\mu = 0.39 \text{ mm}^{-1}$
c = 5.4903 (7) Å	T = 295 (2) K
V = 772.1 (2) Å ³	Block, yellow
Z = 2	$0.14 \times 0.14 \times 0.13 \text{ mm}$
$D_x = 1.550 \text{ Mg m}^{-3}$	
Data collection	
Bruker APEX area-detector	$R_{\rm int} = 0.035$
diffractometer	$\theta_{\rm max} = 27.5^{\circ}$
φ and ω scans	$h = -8 \rightarrow 3$
3543 measured reflections	$k = -25 \rightarrow 28$
946 independent reflections	$l = -6 \rightarrow 6$

© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Received 15 February 2005 Accepted 18 February 2005

Online 26 February 2005

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0921P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.070$	+ 1.2465P]
$wR(F^2) = 0.185$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.14	$(\Delta/\sigma)_{\rm max} = 0.001$
946 reflections	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
113 parameters	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table [•]	1
--------------------	---

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1w-H1w1···O3 ⁱⁱ	0.85	2.29	2.94 (1)	134
$O1w - H1w1 \cdots O3^{iii}$	0.85	2.12	2.94 (1)	163
$O1w - H1w2 \cdots O6$	0.85	2.05	2.681 (7)	131
$O1w - H1w2 \cdots O6^{iv}$	0.85	2.10	2.681 (7)	125
$O1w - H1w1 \cdots O6^{ii}$	0.85	2.07	2.681 (7)	128
$O1w - H1w1 \cdots O6^{iii}$	0.85	2.05	2.681 (7)	131
$N1 - H1n1 \cdots O2^{v}$	0.86	1.98	2.818 (8)	163
$N1 - H1n1 \cdots O5^{v}$	0.86	2.12	2.86 (2)	145
$N1 - H1n2 \cdot \cdot \cdot O1$	0.86	2.01	2.83 (2)	159
$N1 - H1n2 \cdot \cdot \cdot O7^{iv}$	0.86	1.88	2.65 (2)	148
$N2-H2n \cdot \cdot \cdot O3^{vi}$	0.86	1.97	2.75 (2)	150
N2-H2 n ···O4 ^{vii}	0.86	1.81	2.58 (2)	149
N2-H2 n ···O7 ^{vii}	0.86	2.38	3.10(2)	141
$N2-H2n\cdots O8^{vi}$	0.86	2.06	2.86 (3)	156
N2-H2 n ···O8 ^{vii}	0.86	2.18	2.98 (3)	155

Symmetry codes: (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y + 1, z; (iv) x, y, -z + 1; (v) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) x + 1, y, -z; (vii) x + 1, y, z - 1.

The sulfate group lying on the mirror plane is disordered, and the O atoms were refined as eight O atoms of 0.5 site occupancy each. The four S–O distances were restrained to within 0.01 Å of each other, as were the O···O distances. The ellipsoids were restrained to be nearly isotropic.

The carbon- and nitrogen-bound H atoms were placed in calculated positions (C-H = 0.97 and N-H = 0.86 Å) and were included in the refinement in the riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(C,N)$. The water O atom lies on a site of symmetry 2/m; the two disordered H atoms were placed in chemically sensible positions (O-H = 0.85 and H···H = 1.39 Å) with half-occupancy, so that one of them was able to form a hydrogen bond. They were not refined; their U_{iso} values were constrained to $1.2U_{eq}(O)$.

A plot of the three components of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The second disorder component (atoms O5, O6, O7 and O8) is shown as dotted ellipsoids and bonds. [Symmetry code (i): $\frac{3}{2} - x$, $\frac{1}{2} + y$, $z - \frac{1}{2}$.]

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the Natural Scientific Foundation Committee of Shanxi Province (grant No. 20041031) and the University of Malaya for generously supporting this study.

References

Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Ilioudis, C. A., Georganopoulos, D. G. & Steed, J. W. (2002). CrystEngComm, 4, 26–36.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.